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SUMMARY 

Incorrect positioning of single nucleotide polymorphisms (SNP) can affect imputation accuracy 
and decrease the accuracy of genomic prediction. This study aimed to develop a method to identify 
the most likely genomic position of the misplaced SNPs which have low imputation accuracy by 
fitting a Spline curve using linkage disequilibrium (LD) information. The accuracy of the method 
was validated by correctly identifying the masked position of 2,560 out of 45,918 SNP with a 100% 
correlation between the original and estimated positions. Candidate SNPs with low imputation 
accuracy (< 0.5) were assumed to be incorrectly positioned on the genome assembly. The pair-wise 
LD between these SNPs and other SNPs on the genome was used to fit a Spline curve. The Spline 
peak was considered the most likely position for the candidate SNPs. This LD-based method 
assigned the new position for 92% of the SNPs with low imputation accuracy and improved the 
mean imputation accuracy of these repositioned SNPs from 0.21 to 0.97 in Australian Brahman 
cattle. 
 
INTRODUCTION 

Genotype imputation can provide high-resolution genomic information that can be used to 
accelerate the rate of genetic gain (Piccoli et al. 2014). For accurate genotype imputation, a genome 
assembly providing the genomic positions of the SNPs is required, and for some SNPs, the reported 
position on the assembly may be inaccurate (Yadav et al. 2021). However, structural variants, 
genotyping errors, chip density, size of the reference population, minor allele frequency (MAF), the 
magnitude of LD between SNP, the number and size of the shared haplotypes between individuals 
in the reference and target population, genetic structure and history of the population, and SNP 
distribution on the genome can all have an effect on genotype imputation accuracy (Bohmanova et 
al. 2010; Lashmar et al. 2019; Chen et al. 2021). The LD information has been used to identify the 
correct position of the SNP in the past. Although a few studies have discussed the relationship 
between the LD and SNP position (Miller et al. 2006; Khatkar et al. 2010; Yadav et al. 2021), 
identifying and correcting the incorrect position of SNP on the genome is still a challenge. This 
study aimed to develop a new method to identify the correct position of SNPs with low imputation 
accuracy (< 0.5). 
 
MATERIALS AND METHODS 

Genomic data and quality control. A total number of 50,060 Australian Brahman animals, 
genotyped with chip densities ranging from 7k to 800k, were used to evaluate SNP imputation 
accuracy. Quality Control (QC) before imputation removed SNP with minor allele frequency (MAF) 
less than 0.05 and with a call rate of less than 0.4 across all animals. Similarly, the animals with a 
call rate of less than 0.2 across all SNPs in the combined data set have also been eliminated during 
the QC filtration (Connors et al. 2017). After QC, 45,973 animals and 45,918 SNPs were left for 
further analysis. 
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Estimation of imputation accuracy. A genotype imputation scenario from 30k to 50k with 
10,000 animals in the reference population was considered the optimum scenario to evaluate the 
SNP imputation accuracy (Ferdosi et al. 2021). The population was divided randomly into 10,000 
reference animals with the remaining set as the target population. Then, in the target population, 
SNPs were randomly masked to the lower density and imputed to the original density. The process 
of random division of the population and masking of the SNPs was repeated 20 times to ensure all 
SNPs were involved in the imputation process. FImpute version 3 (Sargolzaei et al. 2014) with 
default parameters without using the pedigree information was used for the imputation, and 
Pearson’s correlation between observed and imputed genotypes was considered as the metric for 
imputation accuracy. SNPs with mean imputation accuracy above 0.99 and a standard deviation 
(SD) of less than 0.001 across 20 iterations were assumed to be in their correct position, in order to 
use them to validate the Spline method. These SNPs are hereby referred to as validation SNPs. The 
SNPs with a mean imputation accuracy lower than 0.5 and SD lower than 0.1 in all iterations 
(hereafter referred to as candidate SNPs) were identified as SNPs potentially misplaced in the 
genome assembly for further LD analysis and repositioning. 

LD calculation. After identifying low imputation accuracy SNPs, a pair-wise LD calculation 
was conducted using Plink version 1.9 (Purcell et al. 2007) between the candidate SNPs and all 
other SNPs across the genome. 

The Spline model. For each candidate SNP and all other SNP on each chromosome, a piece-
wise cubic polynomial Spline model, specified by four coefficients, was used to capture the 
nonlinear relationship between LD values and positions on the genome using the Splines package, 
specifically the natural cubic splines (ns) function in R (Ihaka and Gentleman 1996). LD values at 
each genomic position were used to solve for the Spline equation coefficients. The solved 
polynomial equations were used to fit the Spline curve across positions on the genome. The Spline 
model equation is as follows;                                                

X = �βiϕi(t)
k

i=1

 

where X is the LD between the candidate SNP and other SNPs on the chromosome, t is the position 
of the SNP on the genome in base pair, βi are coefficients estimated by the Spline model, ϕi is the 
Spline function in the interval [ti, ti+1], and k is the number of intervals (the region between two 
consecutive knots). The coefficients of the Spline equation in each interval were calculated using 
the least squares fitting approach to minimise the total error between observed LD values and 
estimated LD values by the Spline model. The number of data points between each two consecutive 
knots depended on the SNP distribution across the chromosome.  

Flexibility control. The flexibility (fitness) of the Spline model was controlled by defining the 
degree of fitness (df), which quantifies the number of intervals and the smoothness of the fitted 
Spline curve for each candidate SNP in each chromosome. The number of intervals also determines 
the model's fitness based on the number and distribution of the data points across the chromosome. 
Four random degrees of model fitness, based on the number of intervals (10, 20, 50, and 100), were 
used to find the optimum degree of fitness for the Spline model.  

Peak detection. After fitting the Spline curve to identify the position of interest on the genome, 
the first derivative of the Spline curve equation was calculated to identify the position of the peak 
of the curve. Peaks and valleys are the points where the slope of the curve is zero. The highest peak 
across all chromosomes was considered the estimated position for each SNP candidate. 

Validation of the Spline model. To test the accuracy of the Spline model in identifying the SNP 
position using LD information, the positions of 2,560 validation SNPs were masked and re-estimated 
using the Spline method. The correlation between the original and estimated positions of the 
validation SNPs was considered as the model accuracy. 
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Repositioning of the SNP with low imputation accuracy. After repositioning of the candidate 
SNP, a further 20 rounds of imputation were conducted to assess the imputation accuracy of the 
repositioned SNPs in their new positions. 
 
RESULTS AND DISCUSSION 

Figure 1 shows the accuracy of the Spline model in estimating new positions for the candidate 
SNPs using different degrees of fitness. The original and estimated positions of the validation SNPs 
had the strongest correlation when the number of intervals was the highest. 

   

 
Figure 1. Validation of the Spline model using different degrees of fitness in estimating new 
positions using pair-wise LD information of the validation SNPs in Brahman 
 

The Spline model was able to identify new positions for 34 out of 37 SNPs with low imputation 
accuracy. Figure 2 shows the imputation accuracy for these SNPs before and after repositioning. 

 
Figure 2. Imputation accuracy before and after SNP repositioning with Spline model 
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The Spline method was able to accurately identify the most likely position of 92% of the SNPs 
with low imputation accuracy on the genome using pair-wise LD information and improved the 
imputation accuracy of these SNPs. We observed that the incorrect position of the SNPs on the 
genome can contribute to lower imputation accuracy. However, the SNPs, whose new positions were 
assigned at the end of the chromosomes, still showed low imputation accuracy. Despite the high 
performance of the Spline method in identifying the correct positions, sensitivity to very low LD 
values and difficulties in estimating the positions of the SNPs that belong at the ends of 
chromosomes, can be considered as its limitations.  
 
CONCLUSION 

The incorrect position of the SNPs on the genome affects the genotype imputation accuracy. 
Fitting a Spline curve using pair-wise LD information can help to accurately identify the correct 
position of the SNPs and using newly assigned positions for the SNPs can improve the genotype 
imputation accuracy. 
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